KEV ENSTANT REEALL FACTS (KKZRFSD

|  | Aut I | Aut 2 | Spr I | Spr 2 | Sum I | Sum 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Reception | I can count forwards and backwards to IO (20) | I can say one more and one less than a number | I know addition number bonds to 10 | I know addition and subtraction bonds to 10 | I know doubles to 10 | I know halves to 10 |
| Year I | I know number bonds to 10 | I know fact families to 10 | I know number bonds to 20 | I can count forwards and backwards to 50 from any given number. | I know doubles and halves of numbers to 10 . | I can count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s |
| Year 2 | I know number bonds to 20 | I know number bonds to 100 (e.g. 30 $+70)$ | I can recall doubles and halves to 20 | I can recall multiplication and division facts for the 2 and $10 x$ tables. | I can recall multiplication and division facts for the $5 \times$ tables. | I can tell the time to five minutes, including quarter past/to the hour |
| Year 3 | I know all number bonds to 20 and can use number bonds to derive pairs of numbers that total 100 e.g. $64+36=100$ | I know multiplication and division facts for the 2,5 and $10 x$ tables | I know the multiplication and division facts for the 3 times tables | I know multiplication and division facts for the 4 times tables | I know multiplication and division facts for the 8 times tables | I can tell the time to the nearest minute (analogue \& digital) on 12 and 24 hour clocks |
| Year 4 | I can find out what must be added to any 2 -digit number to make 100 . | I know the multiplication and division facts for the 3,6 and9 times tables | I know the multiplication and division facts for the 7and II times tables. | I know the multiplication and division facts for the II and 12 times table. | I can recognise decimal equivalents of fractions. | I can multiply and divide single-digit numbers by 10 and 100. |
| Year 5 | I know the multiplication and division facts for all times tables up to $12 \times 12$. | I can count forwards or backwards in steps of powers of 10 (e.g. 100, 0,000 etc) for any given number up to $1,000,000$ | I know all pairs of factors of numbers up to 100 and can identify prime numbers up to 19 . | I know the decimal and percentage equivalents of the fractions $1 / 2,1 / 4,3 / 4,1 / 3$, $2 / 3$, tenths and fifths | I know decimal number bonds to I and 10 . | I know all squared numbers up to $12 \times$ 12 |
| Year 6 | I know the multiplication and division facts for all times tables up to $12 \times 12$ | I can multiply and divide numbers by 10 , 100 and 1,000 giving answers up to 3dp | I can derive multiplication and division facts using decimal numbers (e.g. $8 \times 0.7=5.6$ ) | I know all previous number bonds including decimals | I know the decimal and percentage equivalents of the fractions $1 / 2,14,34,1 / 3$, $2 / 3$, tenths and fifths | I can identify the properties of 3D shapes |

## RECEPTRON

|  | Aut I | Aut 2 | Spr I | Spr 2 | Sum I | Sum 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Reception | I can count forwards <br> and backwards to IO <br> $(20)$ | I can say one more <br> and one less than a <br> number | I know addition <br> number bonds to IO | I know addition and <br> subtraction bonds to <br> IO | I know doubles to IO | I know halves to IO |



## YEARD

|  | Aut I | Aut 2 | Spr I | Spr 2 | Sum I | Sum 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year I | I know number <br> bonds to IO | I know fact families <br> to IO | I know number <br> bonds to 20 | I can count <br> forwards and <br> backwards to 50 <br> from any given <br> number. | I know doubles and <br> halves of numbers <br> to I0. | I can count in 2s, 5s <br> and IOs |



The concept of ' 5 and a bit' structure

"Six is five and one more:"
"Six is the whole five is
'Six is five and one more:'
'Six is the whole, five is a part; one is a part:'

ncetm.org.uk/classroom-resources/primm-1-03-composition-of-numbers-0-5/ Number Blocks
 $\square \square-\square=\square=\square$

$2=1+1$
mitas

$4=2+\square$ half of $\square$ is $\square$

$8=\square+\square$ $\square$ $\square$

Y匡园是

|  | Aut I | Aut 2 | Spr I | Spr 2 | Sum I | Sum 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year 2 | I know number <br> bonds to 20 | I know number <br> bonds to IOO（e．g．30 <br> $+70)$ | I can recall doubles <br> and halves to 20 | I can recall <br> multiplication and <br> division facts for <br> the 2 and $10 \times$ <br> tables． | I can recall <br> multiplication and <br> division facts for <br> the $5 \times$ tables． | I can tell the time－ <br> to five minutes， <br> including quarter <br> past／to the hour |
|  |  |  |  |  |  |  |

What numbers are shown？
L．O．：I can identify number bonds to 20．駼


Make the next two numbers in the pattern．


|  | Aut I | Aut 2 | Spr I | Spr 2 | Sum I | Sum 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year 3 | I know all number bonds to 20 and can use number bonds to derive pairs of numbers that total 100 e．g． $64+36=100$ | I know multiplication and division facts for the 2,5 and $10 \times$ tables | I know the multiplication and division facts for the 3 times tables | I know multiplication and division facts for the 4 times tables | I know multiplication and division facts for the 8 times tables | I can tell the time to the nearest minute（analogue \＆ digital）on 12 and 24 hour clocks |


$\qquad$ $\times$ $\qquad$ $=$ $\qquad$
$\qquad$
$\times$ $\qquad$ ＝ $\qquad$
$\qquad$ $\div$ $\qquad$ $=$ $\qquad$
$\qquad$
$\qquad$ $=$ $\qquad$


## Y匡园 4

|  | Aut I | Aut 2 | Spr 1 | Spr 2 | Sum I | Sum 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year 4 | I can find out what must be added to any 2－digit number to make 100 ． | I know the multiplication and division facts for the 3,6 and 9 times tables | I know the multiplication and division facts for the 7 and II times tables． | I know the multiplication and division facts for the II and 12 times table． | I can recognise decimal equivalents of fractions． | I can multiply and divide single－digit numbers by 10 and 100. |

$$
52+\ldots=100
$$

| 100 |  |
| :--- | :--- |
|  | 52 |

－There are $\qquad$ rows of 4 oranges．
There are $\qquad$ oranges in total．
$\qquad$
－$\times$ $\qquad$ $=$ $\qquad$
－ $\qquad$
－The oranges are shared into 9 boxes．
There are $\qquad$ oranges in each box．
$\qquad$ $\div$ $\qquad$ $=$


Here are Annie＇s workings for $9 \times 7$

$$
\begin{aligned}
9 \times 7 & =10 \times 7-7 \\
& =70-7 \\
& =63
\end{aligned}
$$

Use Annie＇s method to complete the number sentences．


Sam is building the 12 times－table．

|  |  | ¢11mm辺 |
| :---: | :---: | :---: |
|  | サ111100 | ण1mmm |
| サणा川T0 | ¢1mmm | ण1mmm |
| $1 \times 12=12$ | $2 \times 12=24$ | $3 \times 12=36$ |

Use base 10 to help you complete the multiplications．
＞ $12 \times 5=\_\quad>5 \times 12=\_\quad>48 \div 12=\_>84 \div 12=$

ロM｜｜M｜TM｜

$$
3 \times 11=33
$$

$\qquad$ $=132$ $\qquad$ $\div 12=8$ $\qquad$ $=9 \times 12$

|  | Aut I | Aut 2 | Spr I | Spr 2 | Sum I | Sum 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year 5 | I know the multiplication and division facts for all times tables up to $12 \times 12$ | I can count forwards or backwards in steps of powers of 10 (e.g. $100,10,000$ etc) for any given number up to $1,000,000$ | I know all pairs of factors of numbers up to 100 and can identify prime numbers up to 19 . | I know the decimal and percentage equivalents of the fractions $1 / 2,1 / 4,3 / 4,1 / 3$, $2 / 3$, tenths and fifths | I know decimal number bonds to 1 and 10 . | I know all squared numbers up to $12 \times$ 12 |


| X | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| 2 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 |
| 3 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 33 | 36 |
| 4 | 4 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 | 44 | 48 |
| 5 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 |
| 6 | 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 54 | 60 | 66 | 72 |
| 7 | 7 | 14 | 21 | 28 | 35 | 42 | 49 | 56 | 63 | 70 | 77 | 84 |
| 8 | 8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 | 80 | 88 | 96 |
| 9 | 9 | 18 | 27 | 36 | 45 | 54 | 63 | 72 | 81 | 90 | 99 | 108 |
| 10 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 | 120 |
| 11 | 11 | 22 | 33 | 44 | 55 | 66 | 77 | 88 | 99 | 110 | 121 | 132 |
| 12 | 12 | 24 | 36 | 48 | 60 | 72 | 84 | 96 | 108 | 120 | 132 | 144 |

If you have twenty counters, how many different ways of arranging them can you find?


| $6{ }^{17} \mathbf{7}^{8}$ |  |  |
| :---: | :---: | :---: |
|  |  | 8 |
| $3^{3}$ | $3 \times 3 \times 3$ | 27 |
| $4^{3}$ |  |  |
| $5^{3}$ | $5 \times 5 \times 5$ |  |
|  | $6 \times 6 \times 6$ |  |

How many factors of
twenty have you found by arranging your counters in different arrays?

Use the place value grid to multiply 3.24 by 10,100 and 1,000

| Thousands | Hundreds | Tens | Ones | Tenths | Hundredths |
| :--- | :--- | :--- | :---: | :---: | :---: |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

When you multiply by __, you move the counters $\qquad$ places to the left.

|  | Aut I | Aut 2 | Spr 1 | Spr 2 | Sum I | Sum 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year 6 | I know the multiplication and division facts for all times tables up to $12 \times 12$ | I can multiply and divide numbers by 10 , 100 and 1,000 giving answers up to 3dp | I can derive multiplication and division facts using decimal numbers (e.g. $8 \times 0.7=5.6$ ) | I know all previous number bonds including decimals | I know the decimal and percentage equivalents of the fractions $1 / 2,1 / 4,3 / 4,1 / 3$, $2 / 3$, tenths and fifths | I can identify the properties of 3D shapes |

## Related Multiplication facts.

An example might be that if I know that $5 \times 7=35$, then I also know the following related facts.

- $7 \times 5=35$
- $35 \div 5=7$ and $35 \div 7=5$
- $50 \times 7=350$ and $5 \times 70=350$
- $0.5 \times 7=3.5$ and $5 \times 0.7=3.5$
- $0.05 \times 7=0.35$ and $5 \times 0.07=0.35$ and $0.5 \times 0.7=0.35$, etc.

For each of the multiplication facts above, there are also related division facts.

Multiplying and Dividing by $\mathbf{1 0 , 1 0 0}$ and 1000

| 10000 | 1000 | 100 | 10 | 1 | $\frac{1}{10}$ | $\frac{1}{100}$ | $\frac{1}{1000}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |



$0.15+0.85=1$
$0.85+0.15=1$
$1-0.15=0.85$
$1-0.85=0.15$

$\begin{array}{llllll}\times 1=1 & 2 \times 2=4 & 3 \times 3=9 & 4 \times 4=16 & 5 \times 5=25 & 6 \times 6=36\end{array}$

